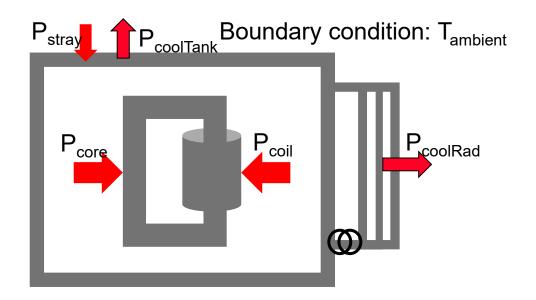
Ansys ININOVATION CONFERENCE

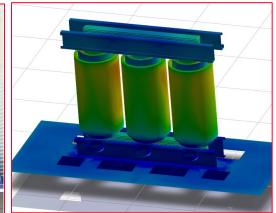
2021

Automatic shell development with ANSYS WORKBENCH for fast & accurate thermal simulation on Dry transformers

Boris SUN

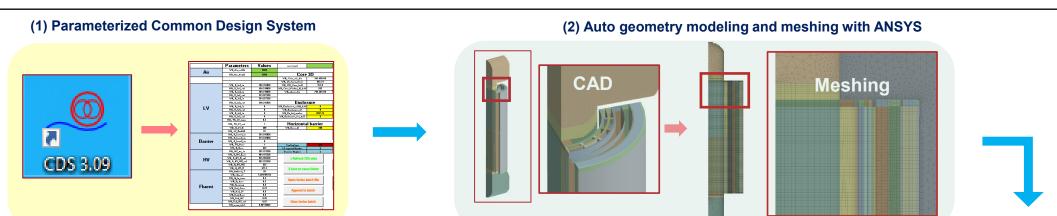
Principle R&D Engineer ABB Powergrids



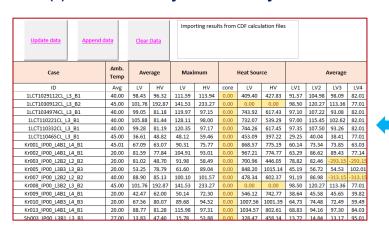

Backgrounds

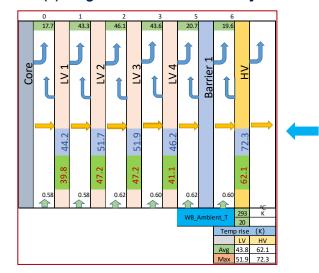
- Transformer Cooling Problem Formulation. Solution methods: <u>traditional</u>, <u>Network</u>, <u>CFD</u>
- <u>Traditional</u>: Empirical-formulas-based method
- <u>Network approach</u>: Equivalent analog thermal network based, Spice solver
- CFD: Detailed physics-based calculation
- Elements included in calculation:
 - · Windings+ insulation layers
 - Core
 - Cooling Duct
 - Cooling systems (AN, AN with enclosures, AF with fans, AFWF, etc)
- Calculation cost:
 - CFD: Several days for pre-processing, meshing + several hours for calculation and post-processing → higher accuracy

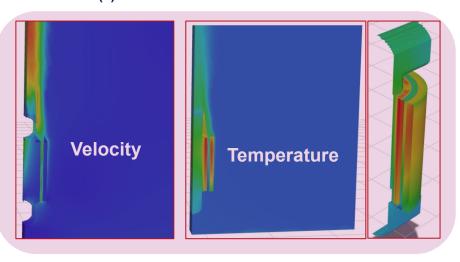
An automatic process could be developed to highly reduce CFD time from several days to several hours with higher accuracy and reliability.



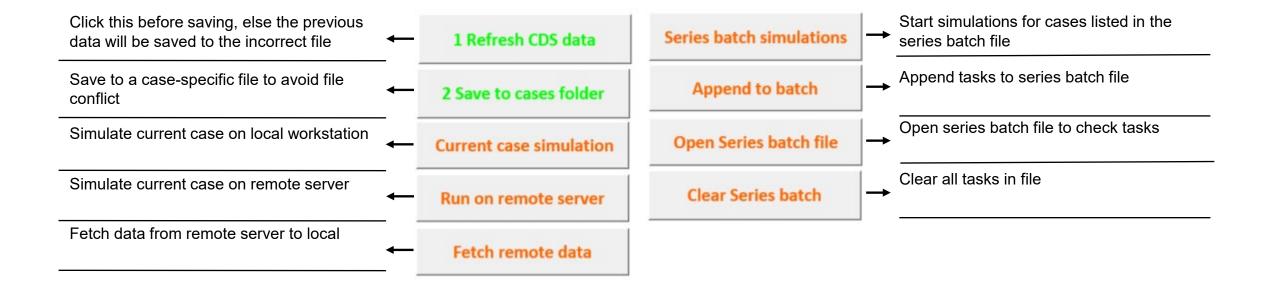
Prototype


Simulation model


Workflow


(5) Global summary & Static analysis

(4) Single case results summary

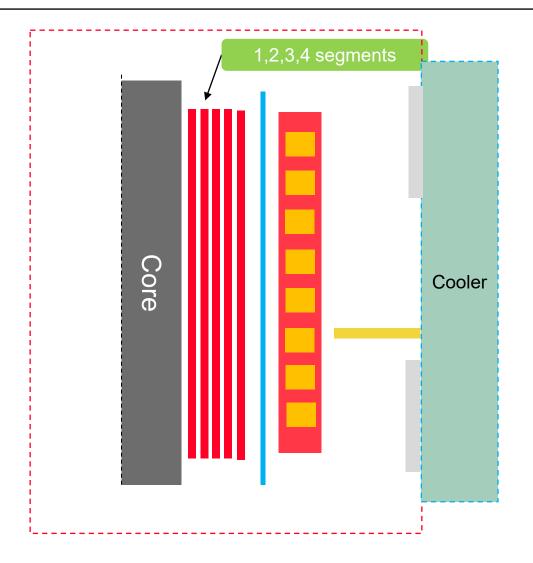


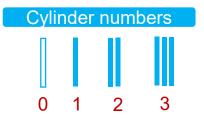
(3) Auto CFD simulation with FLUENT

ANSYS Simulation controlled by Excel Shell

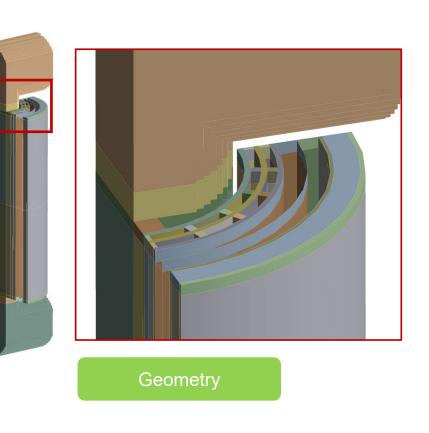
Batch mode simulation

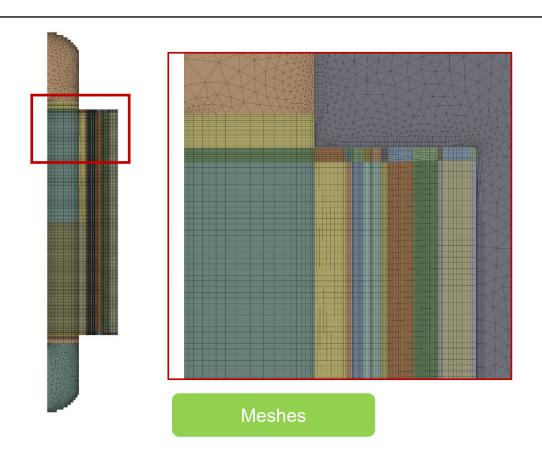
```
Select C:\WINDOWS\system32\cmd.exe
     :\DryCFD_EXE\BatchRun>call .\AFWF.bat 3 3 C1_1LCT110772_L3B3_11PU
   "The LV segment number is set to 3
   "The LV segment number is set to 3
  1 file(s) copied.
"Finshed copying EXCEL file to folder"
                            1 file(s) copied.
   "Finshed copying heatsource file to folder"
   "!Start running WorkBench background"
   "WorkBench running finished"
   "Start copying files to user defined case folder
                           1 file(s) copied.
    The system cannot find the file specified.
The system cannot find the file specified.
The system cannot find the file specified.
\[ \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-0-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-1-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-2-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-3-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-4-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-5-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-6-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-fluent-6-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-fluent-7-error.log. \ANSYS\L3B3_files\dpO\FLU-3\Fluent\fluent-7-error.log. \ANSYS\L3B3_files\
       \ANSYS\L3B3_files\dp0\FLU-3\Fluent\fluent-8-error.log
        ANSYS\L3B3_files\dp0\FLU-3\Fluent\fluent-9-error.log
       \ANSYS\L3B3_files\dp0\FLU-3\Fluent\fluent-999999-error.log
\ANSYS\L3B3_files\dp0\FLU-3\Fluent\heatsource.c
\ANSYS\L3B3_files\dp0\FLU-3\Fluent\resulst.out
                                                                                                                                                    D:\DrvCFD EXE
                                                                                                                                                     D:\DryCFD EXE\ANSYS
                                                                                                                                                     D:\DryCFD_EXE\Dry_temp.wbpz
                                                                                                                                                       orkbench cleaned!
                                                                                                                                                     inished updating parameter file of EXCEL
```


Finished updating DM

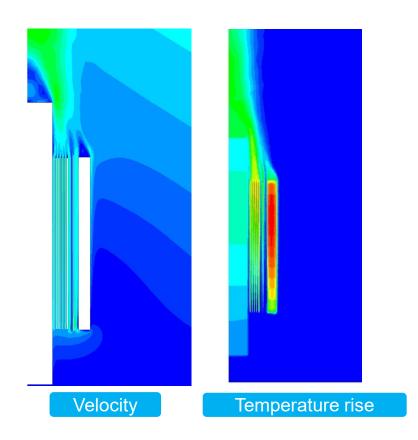

- The calculation process will be shown and can be checked to know the status:
- Wait roughly 2~3 h until prompt "Case xx finished!"

Variants


The CFD tool could be run on

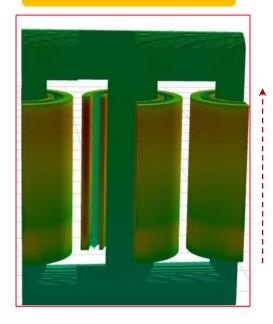

- Different layouts
- Different cooling conditions (AN, AF, AFWF)

Geometry & meshing

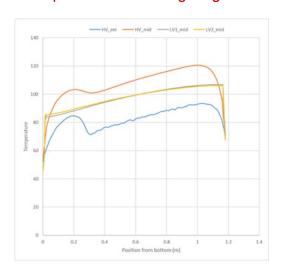


Ideal setup for CFD simulation

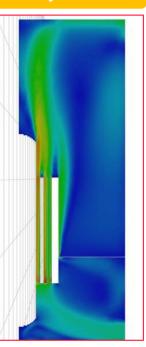
- Turbulence: kw-SST model
- Gas density property: (Ideal-gas model highly recommended)
- Radiation model: (S2S instead of DO for 2D, DO is selected for 3D)
- Pressure and velocity solution: Coupled
- Spatial discretization for pressure: Body Force Weighted or PRESTO! (preferred)



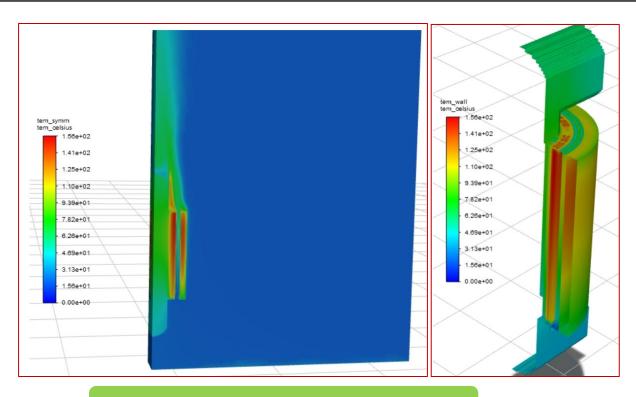
Case under AF condition

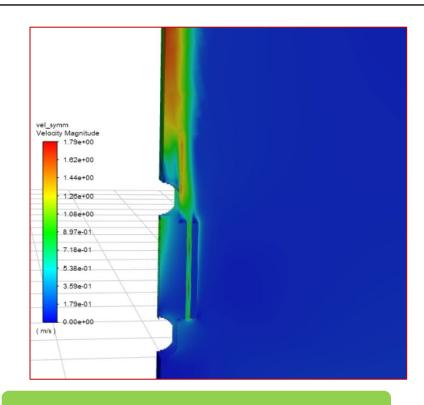


Prototype

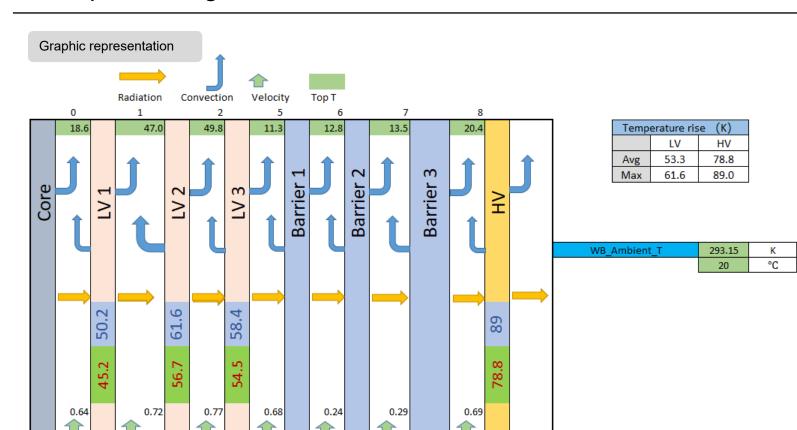

Temperature distribution

Temperature-rise along height


Velocity distribution



Case under AN condition


Temperature rise distribution

Velocity distribution

Post-processing

Results compilation sheet

	Update data Append d		lata	<u>Clear Data</u>		Importing results from CDF calculation files									
	Case		Amb. Temp	Average		Maximum		Heat Source			Average				
	ID		Avg	LV	HV	LV	HV	core	LV	HV	LV1	LV2	LV3	LV4	
			40.00	98.43	96.32	111.59	113.94	0.00	409.40	427.83	91.57	104.98	98.09	82.01	
			45.00	101.76	192.87	141.53	233.27	0.00	0.00	0.00	98.50	120.27	113.36	77.01	
			40.00	99.05	81.18	119.97	97.15	0.00	743.92	617.43	97.10	107.22	93.08	82.01	
			40.00	105.88	81.44	128.11	98.00	0.00	732.07	539.29	97.00	115.45	102.62	82.01	
			40.00	99.28	81.19	120.35	97.17	0.00	744.26	617.45	97.35	107.50	93.26	82.01	
			45.00	36.61	48.82	48.12	59.46	0.00	453.09	397.22	29.25	40.04	38.41	77.01	
ш			45.01	67.09	63.07	90.31	75.77	0.00	868.57	775.19	60.14	73.34	73.85	63.03	
			20.00	81.59	77.84	104.91	93.01	0.00	967.21	774.77	63.29	86.62	89.43	77.14	
			20.00	81.02	48.70	91.98	58.49	0.00	700.96	446.05	78.82	82.46	-293.15	-293.15	
			20.00	53.25	78.79	61.60	89.04	0.00	848.20	1015.14	45.19	56.72	54.53	102.01	
		_	40.00	88.90	85.13	100.10	101.57	0.00	478.34	602.37	91.19	86.98	-313.15	-313.1	
			45.00	101.76	192.87	141.53	233.27	0.00	0.00	0.00	98.50	120.27	113.36	77.01	
			20.00	42.47	62.00	50.14	72.30	0.00	546.12	742.77	38.64	45.58	45.65	39.82	
			20.00	67.56	80.07	89.68	94.52	0.00	1007.56	1001.39	64.73	74.48	72.49	59.49	
			20.00	88.77	81.28	115.98	97.31	0.00	1034.57	802.61	68.83	94.16	97.30	84.03	
			27.00	13.83	47.40	15.78	53.88	0.00	328.47	458.14	13.72	14.84	13.17	95.01	

DRY CFD Shell Development

Summary

- A completely automatic SHELL is developed with ANSYS WORKBENCH environment.
- Relatively higher accuracy comparing to traditional methods.
- Detailed temperature distribution is presented with hot-spot and average temperature rise
- Detailed velocity distribution is presented along all ducts
- Calculation time is acceptable, further ROM model (optiSLang) could be created based on this tool to obtain accurate results in seconds.

